The power of physics theories lays in the fact that they give an adequate description of physical phenomena, and also can make precise predictions about their future, for a long time classical mechanics in its different forms has done a well in both tasks, but when it came to microscopic (angstrom
Classical World
We will start from the classical world, assume that I leave my phone on the table home then leave the house alone, we would both agree that the phone will stay unmoved where I left it whther someone was there to observe it or not, we then say that my phone has an intrinsic reality, this is a propriety that defines classical objects (micron
As I have mentioned in the first paragraph a useful physical theory is one which describes well and also gives precise predictions about the future states of phenomena, in classical physics classical entity can be perfectly described using its degrees of freedom (dynamical variables) at each moment of time, and degrees of freedom is just a fancy word to say coordinates, and its evolution in time is governed by Newton's second law of motion: The sum of all forces acting on an object is proportional to the temporal derivative of its momentum (
Quantum World
Unlike classical objects, quantum entities don't possess an intrinsic reality when they are not being observed, they do acquire an objective reality only when a measurement has taken place, let us go back to my phone example, if we consider my phone to have the dimensions of few angstroms, then when I am not looking at my phone, I can't tell if it is there or not, and not just that, the qualities of phone (position, velocity, energy, ...) are indeterminate when I am looking away, and only when I am looking at that it manifests an objective exitence and a determinate properties, weird huh?
The tools used to describe the classical phenomena won't do any good in describing or predicting the outcome of quantum systems because of the indeterministic nature of quantum objects, then a new set of tools is required, quantum mechanics provides us with such six postulates that serves that.
Postulate 1.
All information of a quantum system is encoded in the complex-valued wave function that is also called the state function, that depends on time and position, and it is usually denoted with the greek letter Psi
The state function can be understood mathmatically to be the mapping from the degree of freedom space
because of the probabilistic interpretation of quantum mechanics, the wave function
Postulate 2.
To every observable in classical mechanics there corresponds a hermitian operator in quantum mechanics.
Which means that for any given measurable quality in classical mechanics there corresponds a measurable quality in quantum mechanics that belongs to the quantum entity, an operator is just a different mathematical representation of this quality, for in classical mechanics position and momentum are represented respectively by the following vectors (
Postulate 3.
The results of measuring an observable(quality) associated with an operator
Operators serve a mathmatical tool to represent the act of measuring a propriety of a quantum entity, as we have mentioned ealier, before preforming a measurement on a quantum system, its state is not determined, but as soon as we observe it, it becomes determined, this transition is also refered to as the collapse of the wave function, and it can be modeled by an eigenvalue equation using operators, and the eigenvalues of a certain operator represent all the possible values that can be measured. hermitian operators have an interesting proprietary, that is that their eigenvalues are all real, and we know thatthe result of measurements are always real numbers , hence the Postulate 2.
Similarly to the state function, operators
Postulate 4.
If a system is in a state described by the wave function
Postulate 5.
The temporal evolution of the state function is governed by time-dependent Schrödinger equation:
Where
For further readings check:
- Claude Cohen-Tannoudji, Bernard Diu, Franck Laloë (1977) Quantum Mechanics Volume I, John Wiley & Sons.
- Zetili Nouredine Zettili, (2009) Quantum Mechanics Concepts and Applications, Wiley.
- Albert Messiah, (1999) Quantum Mechanics(Two Volumes Bound as One), Dover Publication Inc.
- Belal E. Baaquie, (2013) The Theoretical Foundations of Quantum Mechanics, Springer.
- David J. Griffiths, (1995) Introduction to Quantum Mechanics, Prentice Hall.
- Leonard I. Schiff, (1955) Quantum Mechanics, McGRAW-HILL BOOK COMPANY, INC.
- Jun John Sakurai, (1994) (Modern Quantum Mechanics, Addison -Wesley Publishing Company.
- Lectures on Quantum Theory by Frederic Schuller